Entropy potential and Lyapunov exponents.

نویسندگان

  • Stefano Lepri
  • Antonio Politi
  • Alessandro Torcini
چکیده

According to a previous conjecture, spatial and temporal Lyapunov exponents of chaotic extended systems can be obtained from derivatives of a suitable function, the entropy potential. The validity and the consequences of this hypothesis are explored in detail. The numerical investigation of a continuous-time model provides a further confirmation to the existence of the entropy potential. Furthermore, it is shown that the knowledge of the entropy potential allows determining also Lyapunov spectra in general reference frames where the time-like and space-like axes point along generic directions in the space-time plane. Finally, the existence of an entropy potential implies that the integrated density of positive exponents (Kolmogorov-Sinai entropy) is independent of the chosen reference frame. (c) 1997 American Institute of Physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Entropy and Lyapunov Exponents for Finite-State Channels

The Finite-State Markov Channel (FSMC) is a time-varying channel having states that are characterized by a finite-state Markov chain. These channels have infinite memory, which complicates their capacity analysis. We develop a new method to characterize the capacity of these channels based on Lyapunov exponents. Specifically, we show that the input, output, and conditional entropies for this ch...

متن کامل

Always finite entropy and Lyapunov exponents of two-dimensional cellular automata

Given a new definition for the entropy of a cellular automata acting on a two-dimensional space, we propose an inequality between the entropy of the shift on a two-dimensional lattice and some angular analog of Lyapunov exponents.

متن کامل

3 N ov 1 99 4 Measures with infinite Lyapunov exponents for the periodic Lorentz gas

We study invariant measures for the Lorentz gas which are supported on the set of points with infinite Lyapunov exponents. We construct examples of such measures which are measures of maximal entropy and ones which are not.

متن کامل

Nonhyperbolic Step Skew-products: Entropy Spectrum of Lyapunov Exponents

We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2, symbols and with C1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. We derive a multifractal analysis for the topological entropy of the level sets...

متن کامل

Multifractal Analysis for Lyapunov Exponents on Nonconformal Repellers

For nonconformal repellers satisfying a certain cone condition, we establish a version of multifractal analysis for the topological entropy of the level sets of the Lyapunov exponents. Due to the nonconformality, the Lyapunov exponents are averages of nonadditive sequences of potentials, and thus one cannot use Birkhoff’s ergodic theorem neither the classical thermodynamic formalism. We use ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 1997